深圳大学2019年硕士生招生933数据科学及其应用考试初试科目考试大纲

时间:2022-06-15 09:00:26 热度:22℃ 作者:kaoyanwr

全国各省市2019年硕士研究生考试大纲汇总(持续更新中)》》》

 以下是考研网小编整理的“深圳大学2019年硕士生招生933数据科学及其应用考试初试科目考试大纲”,以供各位考生参考。

  一、考试基本要求

《数据科学及其应用》考试大纲适用于报考2018年深圳大学复杂系统与数据科学硕士研究生入学考试。

该科目包括四部分:(1)数学综合(2)高级物理、(3)高级生物学、(4)高等化学,考生根据自己的专业基础,从下列四部分内容中选择其中一个部分进行答题。

二、考试大纲

(一) 数学综合

1.考试基本要求

本考试主要目的是测试考生对微积分、线性代数最基本内容的理解、掌握和熟练程度。要求考生熟悉的基本理论、掌握微积分、线性代数的基本方法,具有较强的抽象思维能力、逻辑推理能力和运算能力。

2.考试内容

2.1高等微积分

(1)极限与连续:数列极限、函数极限、函数的连续性和一致连续性、闭区间上连续函数的性质。掌握数列极限与函数极限的概念,理解无穷大(小)量的概念及基本性质;掌握极限的性质(唯一性、有界性、保号性)及四则运算性质、单调有界收敛定理、Cauchy收敛准则、迫敛性(两边夹、夹挤)原理、两个重要极限;掌握函数的奇偶性、单调性、周期性、有界性等特殊性质;掌握连续性的概念及间断点的分类,掌握初等函数的连续性;掌握闭区间上连续函数的性质:有界性、最值性、介值性(零点定理)、一致连续性。

(2)一元函数微分学:导数、微分、求导运算与法则、微分运算、微分中值定理、洛达法则、泰勒公式、函数单调性、极值与最值、凸性与拐点。理解可导与可微、可导与连续的概念及其相互关系,理解导数的几何意义;理解函数极值点与极值、凸性、拐点等概念;掌握(高阶)导数、微分的四则运算与复合函数求导运算法则,掌握左、右导数的概念以及分段函数求导方法,掌握导函数的介值定理;会用导数研究函数的单调性与极值性,会用二阶导数研究函数的凸性与拐点;掌握微分中值定理及其在根的判定、不等式、不定式极限(洛达法则)等方面的应用;掌握泰勒公式及其在极限、极值点判定等方面的应用;掌握极值与最值的求法、凸的等价定义、以及凸性在不等式等方面的应用。

(3)实数的完备性:区间套、聚点、开覆盖的概念。理解聚点概念及其刻画,理解区间套、开覆盖等概念;理解关于实数完备性的六大基本定理及其证明思想;会用实数完备性定理证明闭区间上连续函数的有界性、最值性、介值性(零点定理)、一致连续性。

(4)一元函数积分学:不定积分、定积分、换元法与分部积分法、牛顿莱布尼兹公式、变上限积分、积分中值定理、定积分在几何中的应用、无穷积分、瑕积分。掌握原函数、不定积分的概念及其基本性质;熟记不定积分的基本公式,掌握换元积分法和分部积分法,会求初等函数、有理函数和三角有理函数的积分;掌握定积分的概念、可积条件、可积函数类;掌握定积分的性质,熟练掌握微积分基本定理、定积分的换元积分法和分部积分法以及积分中值定理;掌握变上限积分的性质;能用定积分计算平面图形的面积、弧长、旋转体的体积与侧面积;理解广义积分收敛的概念、Cauchy收敛准则,掌握广义积分收敛性的比较判别法,无穷积分的狄利克雷判别法、阿贝尔判别法。

深圳大学2019年硕士生招生933数据科学及其应用考试初试科目考试大纲

(5)无穷级数:数项级数、绝对收敛和条件收敛、判别法、函数项级数、一致收敛、幂级数、收敛半径、收敛域、(幂级数)泰勒级数、傅立叶级数。理解数项级数敛散性的概念,掌握数项级数的基本性质;掌握正项级数的比较判别法和根式判别法;掌握任意项级数的狄利克雷判别法和阿贝尔判别法;掌握函数项级数(函数列)一致收敛性判别法、一致收敛函数项级数(函数列)的性质;掌握幂级数收敛半径与收敛域的概念与求法、幂级数的性质, 能够将函数展开为幂级数;掌握周期函数傅立叶级数的展开与收敛性。

(6)多元函数微分学:多元函数的极限与连续、全微分、(高阶)偏导数、方向导数、泰勒公式、隐函数求导及几何应用。掌握多元函数极限、偏导数、全微分、方向导数的概念及其求法;掌握高阶偏导数的计算、低阶泰勒公式的计算;掌握多元函数的极值、条件极值的概念及其判别;掌握隐函数求导方法及其几何应用。

(7)含参变量积分:含参变量正常积分,含参变量反常积分、格马函数、贝塔函数。掌握含参变量正常积分的分析性质;掌握含参变量反常积分的一致收敛性及判别法;掌握含参变量反常积分的分析性质;掌握格马函数与贝塔函数的性质与相互关系;

(8)重积分、曲线积分和曲面积分:积分、重积分计算、第一(二)型曲线积分、第一(二)型曲面积分、格林公式、高斯公式、斯托克斯公式。理解重积分、第一(二)型曲线积分、第一(二)型曲面积分的概念、基本性质与几何意义;掌握二重积分与三重积分的常用计算方法及几何应用;掌握第一(二)型曲线积分、第一(二)型曲面积分的计算;掌握并能运用格林公式、高斯公式、斯托克斯公式。

免责声明:本站所提供的内容来源于网络搜集,由考研网小编整理,仅供个人备考、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。

标签:
相关推荐
四种主题风格
广告位 Ad1